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The Untether AI at-memory architecture for neural 
network inference delivers the highest performance 
and efficiency of any competing architecture. The 
Untether AI inaugural chip, runAI200, deploys at-memory 
computation in a spatial architecture designed around 
minimizing the data movement required for each 
multiply-accumulate (MAC) operation, thus minimizing 
power and latency. This is done by interleaving 
processing elements (PEs) into an SRAM array, with 
each PE physically abutted with dedicated SRAM. 
RunAI200 demonstrates the superiority of the at-
memory architecture by achieving industry leading 
TeraOperations per second (TOPs) and TOPs per 
watt on an older 16nm process technology. Tunable 
frequency and voltage enable the user to handle 
compute intensive applications in Sport Mode with 502 
INT8 TOPs in a 75 watt power envelope, or in Eco Mode 
to achieve over 8 TOPs per watt in a 47 watt power 
envelope. The Untether AI tsunAImi PCIe card, which 
features four runAI200 chips, achieves industry-best 
efficiency and a single-card record of 2 PetaOperations 
per second of performance in a 300 watt power 
envelope. 
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1. Introduction 

We are amid the third wave of artificial intelligence investment, 
dubbed the Deep Learning Era. Like each of the previous waves, 
this one was started by the repurposing of existing hardware. By 
implementing what used to be a prohibitively expensive training 
algorithm on GPUs, researchers enabled deep neural networks to 
make the jump from the theoretical to the practical domain. Since 
then, the field of deep learning has grown exponentially. Deep 
learning practitioners are promising everything from self-driving 
cars to life-changing medical advancements, and although the 
results thus far are impressive, a clear trend has emerged. The 
success of deep neural networks is fueled by an insatiable hunger 
for compute power[1] . Every year, state-of-the-art benchmarks 
are broken by increasingly complex neural nets. The size of neural 
nets is growing parallel to the demand for applications powered 
by them. While GPUs and CPUs may be enough for training, the 
demand for inference at scale challenges these architectures in 
terms of power efficiency and latency. There are two main reasons 
for this.
 
First, neural net inference workloads are shaped differently from 
traditional ones. The old way involves a processor fetching a 
single, relatively small piece of data and doing a large portion of 
the desired and sometimes complex computation on it. Neural 
network inference flips this on its head; the computation itself 
may be relatively simpler, usually boiling down to some form of 
a dot product, but every step requires a massive amount of data 
being moved and processed in parallel.
 
Second, while transistors have shrunk in area by many orders of 
magnitude, the wire lengths have only shrunk linearly, and the 
overall size of high-end processors remains roughly the same. That 
means the energy used inside a chip has transitioned from being 
dominated by the transistors doing the computation to the wires 
that get the data to them.
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Given these challenges, the traditional von Neumann architecture 
of CPUs and GPUs is not very well suited for the compute 
requirements of neural net inference. Moving the large volumes 
of coefficients (weights) and data between memory and the 
processing element wastes a great deal of energy. Over 90% of the 
energy in these processors is wasted on data movement.

von Neumann Architecture At-Memory Architecture

MAC Transport Local SRAM Fetch DRAM Fetch

2.5 pJ/B MAC

0.43 pJ/B MAC

6X Reduction

This is the foundational insight for the Untether AI at-memory 
architecture - minimizing data movement is the most important 
aspect for building a highly efficient neural net inference 
processor. Minimizing data movement creates an efficient overall 
system that can do more total work with lower overall latency.
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2. The At-Memory Architecture 

The namesake characteristic of the At-Memory Architecture is 
the physical connection between the processing elements “at 
the memory” that feeds them. Each processing element in our 
architecture is connected via short, wide busses to dedicated 
SRAM cells. Compare this to the long, narrow busses of traditional 
von-Neumann architectures found in CPUs and GPUs, where a 
processing element is fed data from a cache or external DRAM. By 
doing away with cache and external dram, we significantly reduce 
latency and power.

ALU

SRAM SRAM

D
R
AM

Cache

ALU

Near Memory/
Von Neumann Architectures

At-Memory Computation

• Long, narrow busses
• Deep/shared cache

Pipeline logic

SRAM

ALU

ALU

SRAM

§ Short, massively parallel 
direct connections

§ Dedicated, optimized memory 
for efficiency and bandwidth

Untether AI’s at-memory architecture was designed with a careful 
balance between compute intensity and memory capacity. As 
with everything in our architecture, distance and area are the 
dominant considerations. Area may be dedicated to memory or to 
computation, but as any given area becomes larger, the distance 
to move data between blocks on the chip becomes higher and 
therefore costs more energy. 
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We struck the right balance in runAI200 by interleaving over 260,000 
processing elements into a 204MB SRAM array. Traditionally, a large 
block of SRAM is tied to a very fast central processing unit, and 
memory throughput speed is critical to feed that processing unit. 
Because each of the over 260,000 processing elements are directly 
connected to a small block of dedicated SRAM, the throughput 
of each individual block can be much lower while as a system 
still providing extremely high aggregate memory bandwidth. In 
addition, running standard SRAM cells at a lower speed allows 
them to be run at a lower voltage and cuts memory access energy 
costs.
 
Once coefficients and activations are loaded into SRAM, the 
distance the data needs to be moved is extremely short because 
the SRAM block and the processing element are physically abutted. 
In a traditional architecture, after the expensive memory read, the 
data must still flow through a high-speed memory bus with the 
associated energy cost of sending it that distance. The energy cost 
of high-speed SRAM and long fast buses means that even in the 
most advanced processes you see traditional architectures doing 
no better than 2.5 TOPs per watt, before factoring in the cost of 
DRAM access, compared to our architecture which delivers 8 TOPs 
per watt.
 
The energy cost for retrieving coefficient data gets even higher if 
you need to go off chip to DRAM. Most companies do not include 
this energy in their advertised calculations, but it is a large 
energy cost and DRAM access is essential to making use of their 
architecture.  By maximizing the amount of SRAM available, and 
keeping the coefficients on chip, there is no external DRAM load 
and store, meaning that the advertised energy of our solution is 
the total energy it consumes.
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3.  Architecture Implementation 

Overview
The at-memory architecture is implemented in the runAI200 device 
in the form of 511 memory banks. Each memory bank houses a 
custom RISC-V controller, 512 processing elements (PEs), and 385KB 
of SRAM. The banks are connected horizontally by a proprietary 
high speed, pipelined interconnect called the Rotator Cuff, and 
vertically by a mechanism called Direct Row Transfers. The chip 
connects to its host processor with a PCIe Gen4 x16 interface, 
which uses a pipelined bus (PBUS) to feed into each of the 
memory banks.
Untether AI’s at-memory compute architecture is a “best of 
both worlds” approach in that it mixes multiple instruction, 
multiple data (MIMD) and single instruction, multiple data (SIMD) 
processing. MIMD allows for spatial optimization with 511 memory 
banks operating asynchronously, while sequential optimization is 
achieved through SIMD processing, with 512 process elements per 
memory bank executing on a single instruction.
 

511 Memory Banks - MIMD
Asynchronous workloads running in parallel
Synchronized bank-to-bank communication

512 Processing Elements - SIMD
385K SRAM
512 Processing Elements
RISC Processor

RISC CPU
Customized for AI functions
Optimized state machines for offloads
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RISC-V processor
Each memory bank has a custom 32-bit RISC-V processor built to 
accelerate neural networks. Its primary function is configuring a 
2D SIMD array of PEs along with the PE memory array. The array is 
organized into 8 rows, with 64 PEs in each row. The processor also 
allows for bank-to-bank coordination, manages DMA and atomic 
operations with the host, and controls the special purpose state 
machines that drive the PE rows and data movement. 

Message Registers enable nearest neighbor communication. 
A “Big ALU” and 32-bit General Registers (GR) enable program 
counter and pre-fetch.
Special purpose state machines offload the processor to 
accelerate compute (GEMV, PE) and data movement (DRT, MEM, 
ROT).
The Row Mask disables individual rows, and with the PE mask, 
enables fine-grained control of the SIMD operations. Each row has 
a 32-bit Row ALU (RALU) and dedicated register, enabling aggregate 
operations like softmax.
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The Processing Element
The dominant workload in neural net applications is the dot 
product. For convolutional neural networks, this is typically a 
matrix-matrix dot product General Matrix-Matrix Multiply, or 
GEMM. Many AI accelerators focus on performing this calculation 
as efficiently as possible. However, in many networks, like natural 
language processing (NLP) networks such as attention, transformer, 
and BERT, matrix-vector dot products (GEMV) are prevalent. Our 
at-memory computation works at the GEMV level, giving us the 
flexibility to most efficiently run both GEMV and GEMM operations.

Our GEMV architecture gives us the flexibility to build up to GEMM 
by doing multiple GEMV operations, either done in series in one 
physical location or in parallel by taking advantage of multiple 
rows or banks of rows. This flexibility allows us to trade between 
computation, SRAM and area on a per-layer basis. We further 
improve efficiency by disabling the ALU at the individual PE level 
with zero detection. If either an activation or a coefficient is zero, 
the PE only pays for the data fetch, but not the cost of the MAC 
operation.

Our PE is designed to be very efficient at the GEMV operation but 
still capable of doing a wide variety of other like discrete Fourier 
transforms (DFTs) and other common signal processing operations. 
Our low-level instruction set allows very fine grained control over 
the behavior of the PE, and a small set of primitive building blocks 
allow complex operations to be executed without the complexity, 
area and energy cost of moving the data to a dedicated block or 
conventional processor core.

Our GEMV engine is supported by our patented Rotator Cuff, which 
allows the GEMV engine to run at 100% utilization for the full 
duration of any matrix-vector dot product operation. It achieves 
that by moving activations in one of a variety of circular patterns, 
achieved by using a “squashed loop”, hence the name “Rotator 
Cuff”.

Larger operations can be performed by extending the row of PEs 
up to a total length of 512 by configuring the rotator in “snake 
mode”, which connects alternating ends of the rows together to 
treat the entire set of PEs like a long squashed and folded loop.
 



Copyright ©2022 UNTETHER AI Corp. Proprietary & Confidential.

At-Memory Computation: The Winning Architecture for Deep Learning Inference

10

A Reg

Zero Detect

MAC

F Reg

PE M
ask

Rotator Cuff

SRAM Array

C Reg



Copyright ©2022 UNTETHER AI Corp. Proprietary & Confidential.

At-Memory Computation: The Winning Architecture for Deep Learning Inference

11

Moving Data Around
Our Rotator Cuff allows flexibility in data movement. In addition to 
being used during the GEMV operation, it can be used to rearrange 
data, feed data to our per-row ALUs in the RISC controller, or to 
move data between adjacent banks to the East and West. PEs can 
individually be configured at runtime to move data either left 
or right, meaning that both circular patterns and linear patterns 
that move all data in the same direction are available. Rotation 
between banks is achieved by coordinating with the neighboring 
bank and moving from the source Rotator Cuff, through a bank-to-
bank FIFO, into the destination Rotator Cuff. If all rows are moving 
data, this mechanism can stream data from bank to bank at 16 
GB/s.
 
To move data in the column direction, a mechanism called Direct 
Row Transfer (DRT) is used. Each row of 64 PEs can move 64B per 
cycle up or down by one row, giving a maximum rate of 32 GB/s per 
bank, or 15 TB/s for the whole chip. Bank to bank communication 
is enabled through a pair of depth-4 FIFOs at the top and bottom 
of the row, and row masking can be used by the controller to limit 
movement to just a subset of rows. 
 

Direct Row Transfer
Column-based bank-to-bank 
local interconnect
32GB/s bank-to-bank
15TB/s total

Rotator Cuff
Row-based bank-to-bank local 
interconnect
16GB/s bank-to-bank
8TB/s total

X16 PCIe Gen4
Host connectivity
32GB/s

Pipelined Bus
Banks to PCIe connectivity
Row-based ring
8GB/s per row 
80GB/s Total

511 Memory Banks
385K SRAM
512 Processing Elements
RISC Controller
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Data can be moved between the system host and the chip through 
direct memory access (DMA), which is available to every bank 
on the chip via our PBUS. The PBUS is a very energy efficient 
mechanism for moving data long distances within the chip. It does 
that by moving the data only a single step for each clock cycle, 
minimizing the driver size and overall energy needed to transmit 
the data between the banks and the PCIe Gen4 x16 interface at the 
edge of the chip. The PBUS is efficient while allowing us to support 
transfers at the full theoretical bandwidth of PCIe.
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4. Taking Advantage of At-Memory Compute 

The at-memory architecture does come with trade-offs. Perhaps 
the most fundamental one is that the amount of SRAM available 
to store a neural net is fixed and some well-known neural nets are 
large, with some, like GPT-3 being extraordinarily large. Regardless 
of the size of the neural net, however, it can be run using our at-
memory accelerator. There are three fundamental strategies for 
doing this: partitioning the graph onto multiple chips, swapping 
coefficients on-chip, and offloading certain parts of the net to the 
host CPU. These strategies can also be combined by being applied 
at any level of the graph from the complete subgraph level down 
to aspects of specific layers of the graph.

The first strategy is to partition a net and run it on multiple chips. 
This is the default strategy and works great if the net can be made 
to fit onto the available number of chips. Each tsunAImi ships with 
4 chips totaling over 800MB of SRAM space, so for most networks 
this solution will be the answer. For customers that have multiple 
boards, this strategy can be extended to encompass all available 
boards, allowing full at-memory acceleration of multi-GB sized 
networks.

If the net is extremely large, the strategy shifts to batching, with 
larger batch sizes amortizing the energy and time cost of swapping 
the contents of the chip at the expense of latency. Because we rely 
on the host computer for DRAM access, the range of batch sizes 
and maximum network size is effectively unlimited.

A key enabler of this last strategy is our built-in support for 
atomic PCIe operations, which allow the host and accelerator 
to coordinate with strong guarantees, a feature we’ve found 
surprisingly lacking in competing accelerators.

By applying these strategies, we can leverage the efficiency and 
speed of at-memory computation for a much wider range of 
applications than would be possible by limiting the architecture to 
only working with on-chip SRAM only, while still getting maximum 
benefit for the majority of workloads where the network can fit.
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5. Conclusion

Untether AI’s at-memory compute architecture is optimized for 
large-scale inference workloads and delivers the ultra-low latency 
that a typical near-memory or von Neumann architecture can’t. 
By using integer-only arithmetic units, we can increase the 
throughput while reducing the cost. Flexibility is maintained to 
provide broad support for a wide variety of neural networks for 
AI inference applications that employ NLP, vision-oriented neural 
networks, and recommender systems in diverse industry segments, 
including industrial vision, finance, smart retail, and autonomous 
vehicles, among others.
Our AI Compute Engine is expressed in two hardware offerings. For 
inference acceleration, Untether AI’s runAI200 devices operate using 
integer data types and a batch mode of 1, employing our unique 
at-memory architecture to deliver 502 TOPs and efficiency as high 
as 8 TOPs per watt. These devices power our tsunAImi accelerator 
card, which provides 2 peta operations per second of compute 
power per single card.
But hardware alone is not enough to successfully deploy AI 
workloads. Untether AI’s hardware offerings are complemented 
by our imAIgine software development kit that’s compatible with 
familiar machine-learning frameworks, including TensorFlow 
and PyTorch with Jupyter Notebook integration. It consists of a 
compiler for automated, optimized graph lowering; a toolkit, which 
supports extensive allocation and simulation feedback; and easily 
integrated communication and health-monitoring software in the 
form of a runtime.
Untether AI’s at-memory compute-based hardware coupled with 
its software development kit provides high performance low power 
AI inference across a wide range of networks, making it flexible for 
today’s neural-network architectures while anticipating the diverse 
unpredictability of AI workloads in the future.

 [1] Source: https://arxiv.org/pdf/2007.05558.pdf

https://arxiv.org/pdf/2007.05558.pdf
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PLEASE READ THE ENTIRETY OF THIS “DISCLAIMER” SECTION CAREFULLY. 
THE INFORMATION IN THIS WHITE PAPER IS PROVIDED “AS IS” WITHOUT ANY 
REPRESENTATIONS, WARRANTIES OR CONDITIONS OF ANY KIND OR NATURE, EXPRESS OR 
IMPLIED. UNTETHER AI CORPORATION (“UNTETHER AI”) MAKES NO WARRANTIES, EXPRESS 
OR IMPLIED, GUARANTEES OR CONDITIONS WITH RESPECT TO OR REGARDING THE THIS 
WHITE PAPER OR ANY PRODUCT REFERENCED HEREIN, INCLUDING BUT NOT LIMITED TO, 
ANY IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, 
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND ANY WARRANTY OR CONDITION OF 
NON-INFRINGEMENT. UNDER NO CIRCUMSTANCES WILL UNTETHER AI, EVEN IF INFORMED 
ABOUT THE POSSIBILITY OF THE FOLLOWING, BE LIABLE FOR: SPECIAL, INCIDENTAL, 
EXEMPLARY, INDIRECT, OR ECONOMIC CONSEQUENTIAL DAMAGES; LOST PROFITS, BUSINESS 
VALUE, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS; OR LOSS OF OR DAMAGE TO DATA. 
THE DISCLAIMERS AND EXCLUSIONS IN THIS WHITE PAPER ALSO APPLY TO UNTETHER 
AI’S AFFILIATES, LICENSORS, CONTRACTORS, AND SUPPLIERS. UNTETHER AI HAS NO 
RESPONSIBILITY FOR CLAIMS BASED ON THIS WHITE PAPER, ANY VIOLATION OF LAW, 
INTELLECTUAL PROPERTY RIGHTS OR THIRD-PARTY RIGHTS RELATED TO THIS WHITE PAPER.  
UNTETHER AI MAKES NO REPRESENTATION ON THE AVAILABILITY OF ANY OF UNTETHER 
AI’S PRODUCTS  AND ANY ASSOCIATED SERVICES. NOTHING HEREIN CONSTITUTES LEGAL, 
SECURITIES, FINANCIAL, BUSINESS OR TAX ADVICE AND YOU SHOULD CONSULT YOUR 
OWN LEGAL, FINANCIAL, SECURITIES, TAX OR OTHER PROFESSIONAL ADVISOR(S) BEFORE 
ENGAGING IN ANY ACTIVITY IN CONNECTION HEREWITH.

This White Paper is intended for general informational purposes only. The information 
herein may not be exhaustive and does not imply any element of a contractual 
relationship. There is no assurance as to the accuracy or completeness of such 
information and no representation, warranty or undertaking is, or is purported to be, 
provided as to the accuracy or completeness of such information. You acknowledge 
that circumstances may change and that the White Paper may become outdated as a 
result; and Untether is not under any obligation to update or correct this White Paper in 
connection therewith. The performance data and examples cited in the White Paper are 
presented for illustrative purposes only. Actual performance results may vary depending 
on specific configurations and operating conditions.  Where the White Paper includes 
information that has been obtained from third party sources, Untether AI has not 
independently verified, and does not guarantee, the accuracy or completeness of such 
information.

No regulatory authority has examined or approved, whether formally or informally, of 
any of the information set out in the White Paper. No such action or assurance has been 
or will be taken under the laws, regulatory requirements or rules of any jurisdiction. The 
publication, distribution or dissemination of the White Paper does not imply that the 
applicable laws, regulatory requirements or rules have been complied with.

Untether AI’s products are warranted according to the terms and conditions of sale for 
such products. Notwithstanding any damages  that  you  might  incur  for  any  reason  
whatsoever,  Untether AI’s  aggregate  and  cumulative  liability  towards  you for the 
products described herein shall be limited in accordance with such terms and conditions 
of sale for such product. 

Untether AI reserves the right to make corrections, modifications, enhancements, 
improvements, and other changes to this White Paper, at any time, without any notice. 
Reproduction  of  information in this White Paper is permissible only if reproduction is 
approved by Untether AI in writing, is reproduced without alteration, and is accompanied 
by all associated conditions, limitations, and notices.

By attending any presentation on this White Paper or by accepting any hard or soft copy 
of the White Paper, you agree to be bound by the foregoing limitations.
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